首页> 外文OA文献 >Precursors and defect control for halogenated CVD of thick SiC epitaxial layers
【2h】

Precursors and defect control for halogenated CVD of thick SiC epitaxial layers

机译:厚SiC外延层卤化CVD的前体和缺陷控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Silicon carbide (SiC) is a very hard semiconductor material with wide band gap, high breakdown electric field strength, high thermal conductivity and high saturation electron drift velocity making it a promising material for high frequency and high power devices. The performance of electrical devices is strongly dependent on the quality, doping level and thickness of the grown epitaxial layers. The SiC epitaxial layers are usually grown by chemical vapor deposition (CVD), using silane (SiH4) and light hydrocarbons (C2H4 or C3H8) as precursors, diluted in a massive flow of hydrogen (H2), at growth temperatures and pressures of 1500-1600 °C and 100-300 mbar, respectively. A Silicon Carbide (SiC) device with a high breakdown voltage (> 10 kV) requires thick (> 100 μm) and low doped (1014cm-3) epitaxial layers. The typical growth rate is usually 5-10 μm/h, rendering very long growth times which result in a high cost for the final device. It is hard to increase the growth rate without running into problems with homogeneous gas phase nucleation, which badly affects the surface morphology and the usefulness of the epitaxial layers for devices. This problem can be avoided by lowering the growth pressure and/or increasing the carrier gas flow (H2) to minimize the homogeneous gas phase nucleation or by increasing the growth temperature to evaporate the silicon droplets. On the other hand introducing chlorine into the gas mixture, by adding HCl or using some chlorinated silicon precursor, such as trichlorosilane (SiHCl3) or tetrachlorosilane (SiCl4), or by methyltrichlorosilane (CH3SiCl3) as a single molecule will prevent nucleation in the gas phase. In this thesis a detailed study of the chloride-based processes and an investigation of a bromide-based CVD process is made using a horizontal hot wall reactor. Focus has been mainly on the study of various precursor molecules but also the effect of process parameters on the growth of thick epitaxial layers (100-200 μm). In paper 1 the growth of SiC epitaxial layers on 4° off-axis substrates manifesting very good morphology when using methane (CH4) as carbon precursor is demonstrated. A comparative study of SiCl4, SiHCl3, SiH4+HCl, C3H8, C2H4 and CH4 in an attempt to find the optimal precursor combination is presented in Paper 2 for growth of 4H-SiC epitaxial layers on 4° off-axis substrates with very good morphology. Paper 3 presents a direct comparison between chloride-based and bromide-based CVD chemistries for growth of SiC epitaxial layers using SiH4 and C2H4 as Si- respectively C-precursors with HCl or HBr as growth additives. The influence of temperature ramp up conditions on the carrot defect density on 8° off-axis 4H-SiC epitaxial layers using the single molecule precursor methyltrichlorosilane (MTS) as growth precursor is studied in Paper 4. In paper 5 growth of about 200 μm thick epitaxial layers with very good morphology at growth rates exceeding 100 μm/h using SiCl4+C2H4 and SiH4+HCl+C2H4 precursor approaches is reported. The effect of growth conditions on dislocation density by decorating the dislocations using KOH etching is reported in Paper 6. In Paper 7 the effect of varying parameters such as growth  temperature, C/Si ratio, Cl/Si ratio, Si/H2 ratio and in situ pre-growth surface etching time are studied in order to reduce the formation of step bunching and structural defects, mainly triangular defects for growth of about 100 μm thick epitaxial layers on 4° off-axis substrates with very good morphology at growth rates up to 115 μm/h.
机译:碳化硅(SiC)是一种非常坚硬的半导体材料,具有宽带隙,高击穿电场强度,高导热性和高饱和电子漂移速度,使其成为高频和高功率器件的有前途的材料。电气设备的性能在很大程度上取决于生长的外延层的质量,掺杂水平和厚度。 SiC外延层通常通过化学气相沉积(CVD)生长,使用硅烷(SiH4)和轻烃(C2H4或C3H8)作为前体,并在大量氢气(H2)中稀释,且生长温度和压力为1500-分别为1600°C和100-300 mbar。具有高击穿电压(> 10 kV)的碳化硅(SiC)器件需要厚(> 100μm)和低掺杂(1014cm-3)外延层。典型的生长速率通常为5-10μm/ h,这导致非常长的生长时间,这导致最终设备的成本很高。在不遇到均相气相成核的问题的情况下很难提高生长速率,这严重影响了表面形态和外延层对器件的实用性。可以通过降低生长压力和/或增加载气流(H2)以最小化均匀的气相成核或通过提高生长温度以蒸发硅滴来避免此问题。另一方面,通过添加HCl或使用某些氯化硅前体(例如三氯硅烷(SiHCl3)或四氯硅烷(SiCl4))或通过甲基三氯硅烷(CH3SiCl3)作为单分子将氯引入混合气体中,将防止气相成核。本文使用水平热壁反应器对氯化物基工艺进行了详细研究,并对溴化物基CVD工艺进行了研究。焦点主要集中在各种前驱分子的研究上,也关注工艺参数对厚外延层(100-200μm)生长的影响。在论文1中,证明了当使用甲烷(CH4)作为碳前体时,SiC外延层在4°离轴基体上的生长表现出非常好的形态。论文2中对SiCl4,SiHCl3,SiH4 + HCl,C3H8,C2H4和CH4进行了比较研究,试图找到最佳的前驱体组合,以在4°离轴衬底上生长4H-SiC外延层,并具有很好的形貌。论文3给出了使用SiH4和C2H4作为Si-分别为C-前体并以HCl或HBr作为生长添加剂的SiC外延层生长的氯化物基和溴化物基CVD化学方法的直接比较。在论文4中研究了温度升高条件对使用单分子前体甲基三氯硅烷(MTS)作为生长前体的8°偏轴4H-SiC外延层上胡萝卜缺陷密度的影响。在论文5中,约200μm厚的生长据报道,使用SiCl4 + C2H4和SiH4 + HCl + C2H4前体方法,在生长速度超过100μm/ h时具有非常良好的形态的外延层。论文6中报道了生长条件对通过位错进行KOH刻蚀装饰对位错密度的影响。在论文7中,变化参数如生长温度,C / Si比,Cl / Si比,Si / H2比和In的影响研究了原位预生长表面刻蚀时间,以减少台阶聚束和结构缺陷的形成,主要是三角形缺陷,用于在4°离轴衬底上生长约100μm厚的外延层,并且具有良好的形貌,生长速率高达115微米/小时

著录项

  • 作者

    Yazdanfar, Milan;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号